

VICTREX WG™ POLYMER 102

General Information

Product Description

High performance thermoplastic material, PolyArylEtherKetone (PAEK), semi crystalline, granules for injection moulding, standard flow, reinforced with wear additives, colour black. WG102 does not contain polytetrafluoroethylene (PTFE) or other halogenated additives or talc.

Higher temperature tribological applications for high strength and stiffness. Excellent wear resistance, low coefficient of friction, low coefficient of thermal expansion. Chemically resistant to aggressive environments.

		Unit	Test Method
Density (Crystalline)	1.44	g/cm³	ISO 1183
Spiral Flow			Internal Method
⊥1	8.50	cm	
2	36.0	cm	
Molding Shrinkage ³			ISO 294-4
Across Flow	0.60	%	
Flow	0.10	%	
1 echanical	Nominal Value	Unit	Test Method
Tensile Modulus (23°C)	19500	MPa	ISO 527-1
Tensile Stress			ISO 527-2
Break, 23°C	195	MPa	
Break, 125°C	130	MPa	
Break, 175°C	85.0	MPa	
Break, 275°C	55.0	MPa	
Tensile Strain (Break, 23°C)	2.0	%	ISO 527-2
Flexural Modulus (23°C)	17000	MPa	ISO 178
Flexural Stress			ISO 178
23°C	290	MPa	
125°C	220	MPa	
175°C	145	MPa	
275°C	75.0	MPa	
Compressive Stress			ISO 604
23°C	250	MPa	
120°C	175	MPa	
200°C	80.0	MPa	
250°C	55.0	MPa	
npact	Nominal Value	Unit	Test Method
Charpy Notched Impact Strength (23°C)	5.0	kJ/m²	ISO 179/1eA
Charpy Unnotched Impact Strength (23°C)	35.0	kJ/m²	ISO 179/1U
Notched Izod Impact Strength (23°C)	6.0	kJ/m²	ISO 180/A
Unnotched Izod Impact Strength (23°C)	40.0	kJ/m²	ISO 180
lardness	Nominal Value		Test Method

VICTREX WG™ POLYMER 102

Thermal	Nominal Value	Unit	Test Method
Deflection Temperature Under Load			ISO 75-2/Af
1.8 MPa, Unannealed	367	°C	
Glass Transition Temperature			ISO 11357-2
Onset	152	°C	
Midpoint	160	°C	
Melting Temperature	373	°C	ISO 11357-3
CLTE - Flow			ISO 11359-2
< 143°C	9	ppm/K	
> 143°C	10	ppm/K	
CLTE - Average			ISO 11359-2
< 143°C	35	ppm/K	
> 143°C	90	ppm/K	
Thermal Conductivity			ISO 22007-4
23°C ⁴	1.3	W/m/K	
23°C ⁵	2.2	W/m/K	
Electrical	Nominal Value	Unit	Test Method
Volume Resistivity ⁶ (23°C)	1.0E+7	ohms·cm	IEC 60093
Fill Analysis	Nominal Value	Unit	Test Method
Melt Viscosity (400°C)	575	Pa⋅s	ISO 11443

Injection	Nominal Value Unit
Drying Temperature	120 to 150 °C
Drying Time	3.0 to 5.0 hr
Hopper Temperature	< 100 °C
Rear Temperature	390 °C
Middle Temperature	395 to 400 °C
Front Temperature	405 °C
Nozzle Temperature	410 °C
Mould Temperature	190 to 215 °C

Runner: Die / nozzle >3mm, manifold >3.5mm

Gate: >2mm or 0.5 x part thickness

Important notes:

- 1) Processing conditions quoted in our datasheets are typical of those used in our processing laboratories
 - Data for mould shrinkage should be used for material comparison. Actual mould shrinkage values are highly dependent on part geometry, mould configuration, and processing conditions.
 - Mould shrinkage differs for along flow and across flow directions. "Along flow" direction is taken as the direction the molten material is travelling when it exits the gate and enters the mould.
 - Mould shrinkage is expressed as a percent change in dimension of a specimen in relation to mould dimensions.
- 2) Data are generated in accordance with prevailing national, international and internal standards, and should be used for material comparison. Actual property values are highly dependent on part geometry, mould configuration and processing conditions. Properties may also differ for along flow and across flow directions.

Detailed data available on our website www.victrex.com or upon request.

VICTREX WG™ POLYMER 102

Notes

- ¹ Mould Temperature: 190°C, Melt Temperature: 410°C, 1.00 mm ² Mould Temperature: 190°C, Melt Temperature: 410°C, 3.00 mm
- ³ 410°C nozzle, 190°C tool
- ⁴ Average
- ⁵ Along flow
- 6 1V

Revision Date: December 2023

This information is provided "as is". It is not intended to amount to advice. Use of the product is at the customer's/user's risk. It is the customer's/user's responsibility to thoroughly test the product in each specific application to determine its performance, efficacy and safety for each end-use product, device or other application and compliance with applicable laws, regulations and standards. Mention of a product is no guarantee of availability. Victrex reserves the right to modify products, data sheets, specifications and packaging. Victrex makes no warranties, express or implied (including, without limitation, any warranty of fitness for a particular purpose or of intellectual property non-infringement) and will not be liable for any loss or damage of any nature (however arising) in connection with customer's/user's use or reliance on this information, except for any liability which cannot be excluded or limited by law. This document may be modified or retracted at any time without notice to the customer/user.

Victrex Manufacturing Limited (or another member of the Victrex group) is the owner or the licensee of all intellectual property rights in and to this document including the following trademarks, VICTREX, INVIBIO, JUVORA, APTIV, 450G, PEEK-OPTIMA, SHAPING FUTURE PERFORMANCE, LMPAEK, TRIANGLE (Device). All rights are protected by intellectual property rights including copyright under relevant national and international intellectual property laws and treaties. All rights reserved. Copyright © Victrex Manufacturing Limited 2023.